top of page

Li, X. and Karpac, J. (2023). A distinct Acyl-CoA binding protein (ACBP6) shapes tissue plasticity during nutrient adaptation in Drosophila. Nature Communications, 14(1):7599. PMID: 37989752 

Erazo-Oliveras, A., N.R., Munoz-Vega, M., Mlih, M., Thiriveedi, V., Salinas, M.L., Rivera-Rodriguez, JM., Kim, EJ., Wright, RC., Wang, X., Landrock, KK., Goldsby, JS., Mullens, DA., Roper, J., Karpac, J., and Chapkin, R.S. (2023). Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nature Communications,14(1):4342. PMID: 37468468

Li, X. and Karpac, J. (2023). REVIEW. Adaptive physiology drives aging plasticity in locusts. Nature Ecology and Evolution, 7(6): 798-799. PMID: 37156890

Weindel, CG., Martinez, ML., Zhao, X., Mabry, CJ., Bell, SL., Vail, KJ., Coleman, AK., VanPortfliet, J., Zhao, B., Wagner, AR., Azam, S., Scott, HM., Li, P., West, AP., Karpac, J., Patrick, KL., and Watson, RO. (2022). Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell , S0092-8674(22). PMID: 35907404

 

Mlih, M., Karpac, J. (2022). Integrin-ECM interactions and membrane-associated Catalase cooperate to promote resilience of the Drosophila intestinal epithelium. PLOS Biology , 20(5):e3001635. PMID: 35522719

Zhao, X., Karpac, J. (2021). Glutamate Metabolism Directs Energetic Trade-offs to Shape Host-Pathogen Susceptibility in DrosophilaCell Metabolism , 33(12):2428. PMID: 34710355

     *Previewed in Cell Metabolism - Defend or reproduce? Muscle-derived glutamate determines an immune-reproductive          energetic tradeoff: PMID: 34879236

Fuentes, N.R., Mlih, M., Wang, X., Webster, G., Cortes-Acosta, S., Salinas, M.L., Corbin, I.R., Karpac, J., and Chapkin, R.S. (2021). Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting nanocluster formation. Journal of Lipid Research , Jan 27;62:100026. PMID: 33515553

 

Zhao, X., Karpac, J. (2020). REVIEW. The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. Current Opinion Insect Science , 41:100-105. PMID: 32898765

 

Zhao, X., Li, X., Shi, X., Karpac, J. (2020). Diet-MEF2 interactions shape lipid droplet diversification in muscle to influence Drosophila lifespan. Aging Cell , e13172. PMID: 32537848

 

Vandehoef, C., Molaei, M., Karpac, J. (2020). Dietary adaptation of microbiota in Drosophila requires NF-kB-dependent control of the translational regulator 4E-BP. Cell Reports , 31(10): 107736. PMID: 32521261

Molaei, M., Vandehoef, C., Karpac, J. (2019). NF-kB shapes metabolic adaptation by attenuating Foxo-mediated lipolysis in Drosophila. Developmental Cell , 49(5): 802-810. e6. PMID: 31080057

Mlih, M., Khericha, M., Birdwell, C., West, AP., Karpac, J. (2018). A virus-acquired host cytokine controls systemic aging by antagonizing apoptosis. PLOS Biology , 16(7): e2005796PMID: 30036358

      *Previewed in Nature Research Highlights

 

Fuentes, NR., Mlih, M., Barhoumi, R., Fan, YY., Hardin, P., Steele, TJ., Behmer, S., Prior, IA., Karpac, J., Chapkin, RS. (2018). Long chain n-3 fatty acids attenuate oncogenic KRas-driven proliferation by altering plasma membrane nanoscale proteolipid composition. Cancer Research , 78(14): 3899-3912. PMID: 29769200

 

Zhao, X., Karpac, J(2017). Muscle directs diurnal energy homeostasis through a myokine-dependent hormone module in Drosophila. Current Biology , 27(13): 1941-1955. PMID: 28669758. F1000Prime.

       *Previewed and Recommended for F1000Prime

Luis Miguel, N., Wang, L., Ortega, M., Deng, H., Katewa, SD., Wai-Lun Li, P., Karpac, J., Jasper, H., Kapahi, P. (2016). Intestinal IRE1 is required for increased triglyceride metabolism and longer lifespan under dietary restriction. Cell Reports, 17(5): 1207-1216. PMID: 27783936

Guo, L.*, Karpac, J.*, Tran, S., Jasper, H. (2014). PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell, 156(1-2):109-122. *equal contribution     

 

Wang, L.*, Karpac, J.*, Jasper, H. (2014). Promoting longevity by maintaining metabolic and proliferative homeostasis.

J Exp Biol., 217(Pt 1): 109-18. *equal contribution    

 

Karpac, J.#, Biteau, B., Jasper, H. (2013). Misregulation of an adaptive metabolic response contributes to the age-related disruption of lipid homeostasis in Drosophila. Cell Reports, 4(6): 1250-1261. #corresponding author

 

Karpac, J., Jasper, H. (2013). Aging: Seeking mitonuclear balance. Cell, 154(2): 271-273.

 

Kapuria, S., Karpac, J., Biteau, B., Hwangbo, DS., Jasper, H. (2012). Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLoS Genetics, 8(11): e1003045.

 

Karpac, J., Younger, A., Jasper, H. (2011). Dynamic coordination of innate immune signaling and Insulin signaling regulates systemic responses to localized DNA damage. Developmental Cell, 20(6): 841-54.  

 

Karpac, J., Jasper, H. (2011). Metabolic Homeostasis: HDACs Take Center Stage. Cell, 145(4): 497-9.

 

Biteau, B., Karpac, J., Hwangbo, D., and Jasper, H. (2010). Regulation of Drosophila lifespan by JNK signaling. Exp Gerontol, 46(5): 349-54.

 

Biteau, B.*, Karpac, J.*, Supoyo, S., DeGennaro, M., Lehmann, R., and Jasper, H. (2010). Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genetics, 6(10): e1001159. *equal contribution

 

Karpac, J., Hull-Thompson, J., Falleur, M., and Jasper, H. (2009). JNK signaling in insulin producing cells is required for adaptive responses to stress in Drosophila. Aging Cell, 8 288-295.

 

Karpac, J., and Jasper, H. (2009). Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends Endocrinol Metab, 20, 100-106.

 

Karpac, J., Kern, A., Kim, S., Brush, S., Bui, S., Hunnewell, P. & Hochgeschwender, U. (2008). Failure of adrenal corticosterone production in POMC-deficient mice results from lack of integrated effects of POMC peptides on multiple factors. Am J Physiol Endocrinol Metab, 295(2): E446-55.

 

Karpac, J., Kern, A. & Hochgeschwender, U. (2007). Pro-opiomelanocortin peptides and the adrenal gland. Mol Cell Endocrinol, 265-266:29-33.

 

Karpac, J., Ostwald, D., Li, G. Y., Bi, S., Hunnewell, P., Brennan, M.B. & Hochgeschwender, U. (2006). Pro-opiomelanocortin Heterozygous and Homozygous Null Mutant Mice Develop Pituitary Adenomas. Cell Mol Biol, 52, 47-52.

 

Ostwald, D., Karpac, J. & Hochgeschwender, U. (2006). Effects on hippocampus of lifelong absence of glucocorticoids in the pro-opiomelanocortin null mutant mouse reveal complex relationship between glucocorticoids and hippocampal structure and function. J Mol Neurosci, 28, 291-302.

 

Karpac, J., Ostwald, D., Bui, S., Hunnewell, P., Shankar, M. & Hochgeschwender, U. (2005). Development, maintenance, and function of the adrenal gland in early post-natal pro-opiomelanocortin-null mutant mice. Endocrinology, 146, 2555-62.

bottom of page